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This paper presents the �rst measurement of the inclusive J= production cross section in the
forward pseudorapidity region 2:5 � j�J= j � 3:7 in pp collisions at

p
s = 1:8 TeV. The results

are based on 9.8 pb�1 of data collected using the D� detector at the Fermilab Tevatron Collider.
The inclusive J= cross section for transverse momenta between 1 and 16 GeV/c is compared with
theoretical models of charmonium production.

PACS numbers: 13.20.Gd, 13.25.Gv, 13.85.Qk, 12.38.Qk
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In high energy pp collisions J= 's are produced di-
rectly, from decays of higher mass charmonium states
[� and  (2S)], and from b quark decays. Existing exper-
imental results in the central rapidity region from UA1
[1] at

p
s = 0:63 TeV, and from CDF [2] and D� [3] atp

s = 1:8 TeV demonstrate that then measured inclu-
sive J= transverse momentum distribution cannot be
described solely by contributions from b quark decays
and prompt production predicted by the color singlet
model [4]. In the color singlet model the charmonium
meson retains the quantum numbers of the produced cc
pair and thus each J= state can only be directly pro-
duced via the corresponding hard scattering color singlet
subprocess. The model predicts direct J= and  (2S)
production rates �fty times smaller than those observed
by CDF [2]. To explain this discrepancy, a color octet
model was introduced [5{7]. The color octet mechanism
extends the color singlet approach by taking into account
the production of cc pairs in a color octet con�guration
accompanied by a gluon. The color octet state evolves
into a color singlet state via emission of a soft gluon.
The parameters of the model were derived from a �t to
CDF data for direct J= and  (2S) production at cen-
tral rapidity. In this article we utilize the large rapidity
coverage of the D� muon system to study the process
pp ! J= +X ! �+�� +X in previously unexplored
kinematical regions of small J= transverse momenta and
large rapidities. We compare our results with theoretical
predictions extended into this kinematic domain.
The D� detector [8] consists of three main systems:

central and forward drift chambers, used to identify
charged tracks for pseudorapidity j�j � 3:2; the uranium-
liquid argon calorimeter with nearly hermetic coverage
for j�j � 4; and the muon system. The detector com-
ponent most relevant to this analysis is the Small Angle
MUon Spectrometer (SAMUS) [9,10] consisting of mag-
netized iron toroids and drift tube stations on each side
of the interaction region with pseudorapidity coverage of
2.2 < j��j <3.3 for a single muon.
The SAMUS stations, three in each arm, consist of

three planes of 29 mm diameter drift tubes: vertical, hor-
izontal, and inclined at 45�. The list of tubes containing
hits is sent to the trigger system and drift times are used
for o�ine track reconstruction. Muon track reconstruc-
tion is based on a Kalman �t [11] to the three-dimensional
coordinates of muons passing through the SAMUS sta-
tions, one before the toroidal magnet and two after, and
the coordinates of the event vertex. The muon momen-
tum resolution �p=p is about 20%, limited by SAMUS
coordinate resolution and by Coulomb scattering in the
calorimeter and muon toroid.
The data were collected using the multilevel trigger

system. The Level 0 trigger [12] is used to select sin-
gle interaction events with hits in scintillator hodoscopes
situated on both sides of the interaction region. At the
Level 1 [13], signals from individual SAMUS tubes are

OR'ed to provide 12 cm wide hodoscopic elements. The
trigger requires a pattern of hits in the trigger elements
consistent with at least one muon with transverse mo-
mentum p�T > 3 GeV/c coming from the interaction re-
gion. Due to high tube occupancy (' 4%) by soft elec-
trons and positrons, we implement a \multiplicity cut"
at the Level 1 trigger. This cut rejects an event if the
number of hit trigger elements in a vertically oriented
tube plane exceeds a �xed threshold.
The logic of the Level 1.5 trigger is similar to that of

the Level 1 trigger, but is based on better spatial segmen-
tation (1.5 cm vs. 12 cm). Events which pass the Level
1.5 trigger are digitized and sent to the Level 2 software
trigger implemented on a farm of VAX stations, where
reconstruction of muon tracks without using drift times
is performed. The calorimeter information is used in the
Level 2 trigger to con�rm the muon through its energy
deposition.
Even with the multiplicity cut, the counting rates of

the Level 1 and Level 1.5 triggers are high in comparison
with the allocated trigger bandwidth. To further reduce
counting rates, we use prescales up to 10 for the dimuon
trigger.
In the o�ine analysis, we select events with one inter-

action vertex, a single muon or dimuon trigger, and at
least two reconstructed muon tracks. Each muon candi-
date is required to have at least 15 hits on a track out
of an average of 18. The energy deposition in the cells
of the hadronic calorimeter along the muon track is re-
quired to exceed 1.5 GeV, and to be spread contiguously
among all �ve calorimeter layers. To ensure a good mo-
mentum measurement, we require p� � 150 GeV/c and a
minimum traverse magnetic �eld integral of 1.2 T�m. In
total, 1779 events with opposite sign muon pairs and 281
events with same sign muon pairs are selected from the
data sample with integrated luminosity of 9:8� 0:5 pb�1

[14]. The estimated fraction of background tracks from
accidental hit combinations in the �nal data sample is
below 1%.
The opposite sign dimuon invariant mass distribu-

tion M�� for events with transverse momentum in the
range 1:0 � p��T � 16 GeV/c and pseudorapidity 2.5
� j���j � 3:7 is shown in Fig. 1. In addition to the J= 
signal, other contributions to the dimuon spectrum with
M�� < 9 GeV/c2 are expected to come from bb and cc
production (jointly denoted as qq) with the heavy quarks
decaying semileptonically or via sequential semileptonic
decays, Drell-Yan production (DY), decay of light mesons
(e.g. �, �, �), and � or K decays.
To estimate the background and simulate the J= de-

tection e�ciency, we use a sample of Monte Carlo (MC)
events from the PYTHIA 5.7 [15] and JETSET [16] MC
generators for each of the dimuon processes mentioned
above, except � and K decays. The J= events are gen-

erated (assuming no J= polarization) with p
J= 
T from
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FIG. 1. The invariant mass spectrum of opposite sign
dimuons with 1.0 � p��T � 16 GeV/c and 2.5 � j���j � 3.7.
The hatched area indicates the J= signal above the sum of
the backgrounds.

1 GeV/c to 20 GeV/c and j�J= j between 2.0 and 4.0.
Generated dimuon events are simulated using D� GEANT

[17] and mixed with minimum bias events from the data
to simulate the combinatoric background. These simu-
lated dimuon events are then subjected to a full trigger
simulation and processed with the standard D� recon-
struction program.
Based on MC studies we approximate the J= signal

by a Gaussian function of 1=M�� to account for lim-
ited muon momentum resolution. The mass spectrum
in Fig. 1 is �t by the sum of the J= signal (with the
width and mean value as free parameters) and MC mass
distributions for background processes (with free normal-
ization). The number of events due to � and K de-
cays is estimated from the data using like-sign dimuon
events. The �t yields 691 � 41 J= events with mean
mass hM��i = 3:03� 0:03 GeV/c2; and standard devia-
tion �M = 0:56� 0:03 GeV/c2.
The dimuon mass resolution does not allow a clear sep-

aration of the J= and  (2S) states. The �t of the in-
variant mass distribution yields a 90% C.L. upper limit
of the  (2S) fraction in the signal associated with the
J= of 15%. A direct measurement of inclusive  (2S)
production for j� j < 0:6 performed by CDF [2] shows
that the J= di�erential cross section is approximately
13 times larger than that of the  (2S).
The inclusive di�erential cross section of J= produc-

tion is calculated from:

d2�
�

piT
�
;

j�j j��

dpiT d�
j

=
1

L"ij

Nij
�piT��

j
;
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FIG. 2. The pT dependence of the J= di�erential cross
section and its theoretical predictions (upper �gure). Only
the statistical errors are shown. The lower �gure presents
systematic uncertainties; the solid curves are the sum of all
systematic errors, the dashed curves represent the uncertainty
band due to J= polarization. The upper (lower) dashed
curve corresponds to 100% transverse (longitudinal) polariza-
tion.

where L is the total integrated luminosity, "ij is the J= 
detection e�ciency, and Nij is the number of J= events
in the �piT , ��

j interval.
To calculate the number of J= events, the �t to the

mass spectrum is performed in �ve ��� and nine p��T in-
tervals. To reduce the errors of the �t in the high p��T
bins, the p��T dependence of the fraction of events at-
tributed to J= is �t to a linear function and the results
of this �t are used to obtain the number of J= events.
The e�ciency of J= detection includes acceptance,

trigger e�ciency, reconstruction e�ciency, and o�ine
cuts and is given by

"ij =
N
�
piT ; �

j
� � "cor

Ntot

�
piT ; �

j
� ;

where N
�
piT ; �

j
�
is the number of events in a given piT ,

�j bin which passed all selection criteria, Ntot

�
piT ; �

j
�

is the total number of generated events in a bin, and
"cor is the correction factor for e�ects not simulated in
MC. The "cor includes e�ciencies for the Level 2 trigger
calorimeter con�rmation of (91 � 2)% for the dimuon
trigger and (95 � 1)% for the single muon trigger, and
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TABLE I. J= inclusive di�erential cross sections Br(J= ! �+��)d2�=dpTd� (nb/GeV/c).

�J= 2.5 - 3.7 2.65 2.95 3.25 3.55

p
J= 
T (GeV/c)

1.5 187 � 34 | 137 � 55 183 � 57 130 � 45
2.5 77 � 8 | 69 � 18 69.9 � 8.1 45.7 � 5.3
3.5 21.3 � 2.1 21.4 � 6.4 23.8 � 2.8 17.6 � 2.0 15.6 � 1.7
4.5 7.14 � 0.77 7.9 � 1.7 8.06 � 0.83 5.59 � 0.86 5.40 � 0.83
5.5 3.03 � 0.36 4.20 � 0.65 3.22 � 0.36 2.44 � 0.46 |
7.0 0.667 � 0.075 1.07 � 0.13 0.758 � 0.076 0.77 � 0.16 |
9.0 0.126 � 0.023 0.212 � 0.033 0.132 � 0.021 0.131 � 0.039 |
11.0 0.037 � 0.013 0.086 � 0.020 0.050 � 0.014 | |
14.0 0.0057 � 0.0023 0.0206 � 0.0039 0.0064 � 0.0020 | |

for o�ine cuts not simulated by the MC of (79 � 4)%.
E�ciencies for those cuts are obtained from the data and
include (88� 1)% for the single vertex cut, (94� 3)% for
the energy deposition cut, and (96� 2)% for the cut on
the number of hits on a track.
The measured J= spectrum is unfolded to correct for

the momentum and pseudorapidity smearing using the
technique of Ref. [18]. The correction factors vary from

1.7 at low p
J= 
T to 0.4 for p

J= 
T > 8 GeV/c.

The calculated di�erential cross section is �t to an ex-
ponential function. The results are used for interpola-
tion of the cross sections from average values of



piT
�

and

j�j j� to the centers of the selected intervals. The

inclusive di�erential J= cross section averaged over a
rapidity range of 2:5 � j�J= j � 3:7 is shown in Fig. 2.
Results for �ner rapidity bins are collected in Table I.
The uncertainties quoted there are statistical only.

TABLE II. Systematic errors of the J= cross sections.

Source Systematic Error

Unfolding procedure 15%
J= background determination 7.2% { 30%

J= detection e�ciency 7%
Level 1 multiplicity cut 6%

Total integrated luminosity 5.4%

 (2S) contamination +0%

�5%

d2�=dpT d� total 20% { 36%

Averaging over 2:5 < j�J= j < 3:7 5% { 30%
d�=dpT�� total 21% { 47%

The largest (> 2%) systematic uncertainties are sum-
marized in Table II. The contribution from the unfolding
is derived from comparison with the bin-by-bin unfold-
ing technique [19]. The uncertainties in the determina-
tion of the background and averaging cross section over
the SAMUS pseudorapidity acceptance vary for di�erent

p
J= 
T and are caused by uncertainties in the parameter-
ization of the data. The di�erence in the parameters of
measured and generated J= mass distributions as well
as the accuracy of the spectrometer description in the
detector simulation are used to estimate the J= detec-
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FIG. 3. The pseudorapidity dependence of the J= pro-
duction cross section with pT > 5 GeV/c (upper points and
curve) and pT > 8 GeV/c (lower points and curve). The
error bars are statistical and systematic errors (polarization
uncertainties not included) summed in quadrature.

tion e�ciency uncertainty. The uncertainty due to the
Level 1 multiplicity cut was determined by varying the
threshold of this cut by one trigger element. The results
in Table I are obtained for the case of zero J= polar-

ization. The additional uncertainty up to +40%
�45%

due to
possible J= polarization is shown in Fig. 2 along with

the p
J= 
T dependence of the total systematic error.

In Fig. 2 we compare the J= cross section with cur-
rent models of charmonium production. For J= from
b quarks we use the NLO QCD predictions [20] with the

renormalization/factorization scale � = 1
3

q
m2
b + pbT

2
,

where mb and p
b
T are the parent b quark mass and trans-

verse momentum, respectively. The scale is chosen to
match theory predictions to the published D� b quark
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cross sections in the central rapidity region [3]. We use
ISAJET [21] to fragment b quarks into J= . The color
octet and color singlet contributions to the direct J= 
production and radiative � decays are taken from Ref. [7].
The term representing the direct J= production is in-
creased by 12% to account for the contribution from
 (2S) decays [2].
Fig. 3 shows the pseudorapidity dependence of the

measured J= cross section for p
J= 
T > 5 and 8 GeV/c

along with the corresponding central rapidity measure-
ments of D� [3] and CDF [2]. Within uncertainties,
the color octet model plus b quark decays describe the
� dependence of the inclusive J= production in the full
rapidity region.
In conclusion, we have made the �rst measurement of

inclusive J= production in the forward rapidity region
2:5 < j�J= j < 3:7 in pp collisions at

p
s = 1:8 TeV. The

data show good agreement with the theoretical predic-
tions based on b quark decays and the color octet model
of direct charmonium production.
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